Fast approach to knowledge acquisition in covering information systems using matrix operations
نویسندگان
چکیده
Covering rough set theory provides an effective approach to dealing with uncertainty in data analysis. Knowledge acquisition is a main issue in covering rough set theory. However, the original rough set methods are still expensive for this issue in terms of time consumption. To further improvement, we propose fast approaches to knowledge acquisition in covering information systems by employing novel matrix operations. Firstly, several matrix operations are introduced to compute set approximations and reducts of a covering information system. Then, based on the proposed matrix operations, the knowledge acquisition algorithms are designed. In the end, experiments are conducted to illustrate that the new algorithms can dramatically reduce the time consumptions for computing set approximations and reducts of a covering information system, and the larger the scale of a data set is, the better the new algorithms perform. 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملMRM: A matrix representation and mapping approach for knowledge acquisition
Knowledge acquisition plays a critical role in constructing a knowledge-based system (KBS). It is the most time-consuming phase and has been recognized as the bottleneck of KBS development. This paper presents a matrix representation and mapping (MRM) approach to facilitate the effectiveness of knowledge acquisition in building a KBS. The proposed MRM approach, which is based on matrix represen...
متن کاملThe construction of characteristic matrixes of dynamic coverings using an incremental approach
The covering approximation space evolves in time due to the explosion of the information, and the characteristic matrixes of coverings viewed as an effective approach to approximating the concept should update with time for knowledge discovery. This paper further investigates the construction of characteristic matrixes without running the matrix acquisition algorithm repeatedly. First, we prese...
متن کاملA New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)
Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 79 شماره
صفحات -
تاریخ انتشار 2015